
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 1, September 2014

 All Rights Reserved © 2014 IJARTET 15

Implementation of Live Video Cartooning
Using Thresholding Technique in YUV

Format

K. Martin Sagayam1, Nitin John James2, Hudson John3, Dan Thomas Jarard4

Assistant Professor, Electronics and Communication Engineering, Karunya University, Coimbatore, India1

UG Students, Electronics and Communication Engineering, Karunya University, Coimbatore, India2, 3, 4

Abstract: The paper discussed here deals with inducing cartoon like features to an input video using DSP
processor (Texas Instrument product, TMS3206416). The basic process involved is taking input, a color video which is to
be converted into a cartoon like video in DSP board can be displayed on VM3224K2 Daughter kit (LCD).
VM3224Daughter Kit is embedded with DSK6416 Kit to display the output video. The conversion process is carried out in
the YUV colour format. Converting in the YUV format is advantageous because applying thresholding technique to the
intensity component (Y’) of the video can render a cartoon like appearance to the video as the YUV colour model is based
on human perception. Only the intensity component of the video in YUV format is modified as the YUV colour model
allows apparent changes in the colour perception without actually altering the chrominance component of the video.
Suitable thresholding techniques; single level or multi level thresholding technique can be used to get the desired effect.
YUV colour model has three components namely Y, U and V. ‘Y’ is the intensity component whereas ‘U’ and ‘V’ are
chrominance components. As this colour model facilitates apparent change in colour by simply varying the intensity
component it is a very simple and intuitive technique to convert an input video to a cartoon like video. In order to observe
the quality and suppleness of the algorithm various simulations in image level using different techniques has been
compared with the proposed algorithm in MATLAB software. The proposed algorithm namely thresholding technique in
YUV format were well implemented practically on our hardware (TMS6416 kit). Implementation of algorithm has been
carried out in C-programming language using CCstudio v3.1 and various simulations have been carried out in MATLAB.

Keywords: Video Cartooning, Cartoonized, Thresholding, YUV Colour Model, TMS3206416, VM3224K2 Kit, CC Studio

I. INTRODUCTION
The purpose of this project is to create a code for

implementing cartoonish fe atures in a real time video such
that the fine detailing of the video is lost while preserving
the edges of various objects so that the output video is less
visually disturbing than the original video. We have used
MATLAB for simulation purposes and 6416 DSK CCStudio
v3.1 for code developing and implementation.

The main challenges include creating a code that
does video processing with acceptable speed of execution
and buffering the live video feed instead of storage and
retrieval to minimize time delay. Techniques such as
masking and filtering have already been implemented for
imparting cartoonish features to an image, however such

techniques cannot be implemented for live video processing
as they take considerable execution time.

This was overcome by applying the thresholding
technique on a video that was in the YUV format. The YUV
colour model is based on the human perception of colour.
The main concept of YUV colour model is that the as the
intensity of an image is varied, our perception of its colour
changes.

Mostly images are represented in compressed
format to save memory space and bandwidth. So it is better
if enhancement of the image can be achieved in compressed
domain rather than transforming to spatial domain and
applying the enhancement technique and transforming back
to compressed domain; thereby increasing the computational

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 1, September 2014

 All Rights Reserved © 2014 IJARTET 16

overhead.
In our work we have represented the color image

using Y-Cb-Cr color space so that we can preserve both
luminance and color component. Previous works have used
the RGB colour model and have created a mask or used
filters such as bilateral filter so that the input image is made
to look like a cartoon. In our approach we have adopted a
method of thresholding only the intensity component ‘Y’ of
Y, Cb and Cr which substantially lowers computational
burden and at the same time renders cartoon like attributes to
the image. After performing thresholding on the intensity
component, the Y-Cb-Cr is converted into RGB using
mathematical equation. All computations have been
performed in C-source code as it is to be implemented in
Code Composer Studio. Code Composer Studio (CCS)
provides an integrated development environment (IDE) for
real - time digital signal processing applications based on the
C programming language. It incorporates a C compiler, an
assembler, and a linker. It has graphical capabilities and
supports real - time debugging. Code Composer Studio acts
as an interface between user and DSK6416 (TMS3206416).
The final obtained YUV values, is of a cartooned output
video. This YUV values are again converted into RGB565
form as our displaying LCD (VM3224 Daughter kit) stores
the image pixels in RGB565 in its memory.

A. V Simulations in MATLAB and their comparisons

As an example, consider the MATLAB simulation
shown below. It compares the two existing methods for
cartooning with the proposed method. From the respective
MATLAB command windows it can easily be seen that the
existing methods consume considerable time for execution.
The proposed method in addition to saving the execution
time also gives a better output performance considering the
standard assumptions of trade-off concept. Though the
project is concerned about video processing, satisfactory
assumptions on the performance of the code can be derived
from the outputs of images as videos are basically a stream
of images. The time consumed for execution for the first two
methods are impractical for live video processing as the
cumulative delay for each image or frame in the video would
be unacceptable.

 Fig. 1 a) Original Image

 b) Masking Output

c) Bilateral Filtered Output

d) Thresholded Output

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 1, September 2014

 All Rights Reserved © 2014 IJARTET 17

B. MATLAB Command Windows

Fig 2 a) Command window for Masking Technique

b)Command Window for Bilateral Filtering Technique

c)Command Window for Thresholding on YUV model

Current techniques incorporated in cartooning a

video are Masking and Bilateral Filtering. However they are
performed on stored video ie; they are not used for live
video processing. Live video cartooning finds its scope in
news broadcasts as it enables a news channel to air sensitive
contents such as a bomb blast or a gruesome attack without
blurring the image or video fearing the impact on the
viewers without a censor. Current techniques allow only
blurring of the frame however with the proposed method it
will be possible to air the scene as a video with cartoon like
attributes is not visually disturbing. To achieve this we need
a code that can process live video feed and hence we need a
code that has very less execution time.

 It is clearly inferred that though the thresholding
on YUV method leads to an output that is slightly inferior to
the Bilateral Filtering method’s output, the execution time is
phenominally reduced. This enables the code to be used for
live video processing as the faster execution speed
minimises the delay so that it is negligible.

The simulations have been carried out in MATLAB
v10.1. The actual implementation of the code is done on the
TMS320C6416 DSK subsequently the code for live video
cartooning have been developed in CCStudio v3.1.

II. MATHEMATICAL PRELIMINARIES

The PAL CCD camera outputs the captured input
video in the YUV colour model format. The computation is
carried out on the YUV format. However the LCD display
on the video daughter card outputs only RGB 565 format we
convert the YUV colour model to RGB colour model for the

sake of display. As we require only the YUV value for
processing, the conversion from RGB to YUV is not
required. The video after processing is converted into the
RGB format using a look up table that is defined in the
program using the conversion formulae. Formulae for
conversions from YUV to RGB and vice versa have been
given below.

The following equations are used to convert Y-Cb-Cr to
RGB and vice-versa:

R = Y + 1.402 (Cr-128) (1)

G = Y - 0.34414 (Cb-128) - 0.71414 (Cr-128) (2)

B = Y + 1.772 (Cb-128) (3)

Y = 0.299R + 0.587G + 0.114B (4)

U = -0.147R - 0.289G + 0.436B (5)

V = 0.615R - 0.515G - 0.100B (6)

III. THE PROPOSED METHOD

The CCD camera directly outputs in YUV format.
Rest of the operation and computation of our algorithm is
carried out in simple C-source code. We have chosen C-
program as we have to show practical real time video
cartooning in DSP hardware that is TMS6416 toolkit and as
programming of TMS6416 is done in code composer studio,
& code composer studio is an IDE which accepts simple C-
program. As the input video is in the desired format we first
plan on the thresholding limits so as to convert the video.
The input video can be split into three parts; they are the
intensity component ‘Y’ and the two chrominance
component ‘U’ and ‘V’. The main advantage of this
proposed method is that it is very easy to implement. The
desired cartoonish effect can be obtained on the video just
by varying the intensity in each frame. Many kinds of
thresholding can be implemented. The simplest is single
thresholding. Here we specify only one threshold limit. If the
number of limits on the threshold is increased we obtain
multi level thresholding. The higher the level of
thresholding, the more detail each frame of the video will
hold.

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 1, September 2014

 All Rights Reserved © 2014 IJARTET 18

Fig. 3 Block diagram for Thresholding in YUV mode

The scene which is to be cartoonized is captured by
the CCD camera. The output of the camera is given to the
DSP processor through the video daughter card. The
processor converts the video to a cartoon based on the code
inputted. The cartoonized video in YUV format is converted
into RGB 565 format by the use of a RGB look-up table
defined in the program. The RGB output is transferred back
to the video daughter card and is displayed on the LCD.

Now, the paper will discuss about the hardware &
software that is used in our research, that are:

A. TMS320C6416 DSK toolkit

 The DSP on the 6416T DSK interfaces to on-
board peripherals through one of two busses, the 64-bit
wide EMIFA and the 8-bit wide EMIFB. The SDRAM,
Flash and CPLD are each connected to one of the busses.
EMIFA is also connected to the daughter card expansion
connectors which are used for third party add-in boards.
An on-board AIC23 codec allows the DSP to transmit and
receive analog signals. McBSP1 is used for the codec
control interface and McBSP2 is used for data. Analog I/O
is done through four 3.5mm audio jacks that correspond to
microphone input, line input, line output and headphone
output. The codec can select the microphone or the line
input as the active input. The analog output is driven to
both the line out (fixed gain) and headphone (adjustable
gain) connectors. McBSP1 and McBSP2 can be re-routed
to the expansion connectors in software.

A programmable logic device called a CPLD is
used to implement glue logic that ties the board
components together. The CPLD also has a register based
user interface that lets the user configure the board by
reading and writing to the CPLD registers. The DSK
includes 4 LEDs and 4 position DIP switch as a simple
way to provide the user with interactive feedback. Both
are accessed by reading and writing to the CPLD
registers.

An included 5V external power supply is used to
power the board. On-board switching voltage regulators
provide the 1.2V DSP core voltage and 3.3V I/O supplies.
The board is held in reset until these supplies are within
operating specifications. A separate regulator powers the
3.3V lines on the expansion interface. Code Composer
communicates with the DSK through an embedded JTAG
emulator with a USB host interface. The DSK can also be
used with an external emulator through the external JTAG
connector.

B. Code Composer Studio (CCS)

CCS provides an IDE to incorporate the software
tools. CCS includes tools for code generation, such as a C
compiler, an assembler, and a linker. It has graphical
capabilities and supports real-time debugging. It provides an
easy-to-use software tool to build and debug programs. The
C compiler compiles a C source program with extension .c
to produce an assembly source file with extension.asm. The
assembler assembles an.asm source file to produce a
machine language object file with extension.obj. The linker
combines object files and object libraries as input to produce
an executable file with extension .out. This executable file
represents a linked common object file format (COFF),
popular in Unix-based systems and adopted by several
makers of digital signal processors. This executable file can
be loaded and run directly on the C6416 processor. A linear
optimizer optimizes this source file to create an assembly
file with extension.asm (similar to the task of the C
compiler).

Some useful files used in Code Composer Studio, given as:
 file.pjt: to create and build a project named file
 file.c: C source program
 file.asm: assembly source program created by the

user, by the C compiler, or by the linear optimizer
 file.sa: linear assembly source program. The linear

optimizer uses file.sa as input to produce an
assembly program file.asm

 file.h: header support file
 file.lib: library file, such as the run-time support

library file rts6700.lib
 file.cmd: linker command file that maps sections to

memory
 file.obj: object file created by the assembler
 file.out: executable file created by the linker to be

loaded and run on the C6713 processor
 file.cdb: configuration file when using DSP/BIOS

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 1, September 2014

 All Rights Reserved © 2014 IJARTET 19

C. VM3224K2 LCD display DAUGHTER CARD

The DSP STAR TFT LCD Video Daughter card
(VM3224K2) is a video in/out hardware module, which
provides developers with an easy-to-use, cost-effective way
to evaluate and develop video processing algorithm based on
TMS320C6000TM DSP. The VM3224K2 acquires
NTSC/PAL analog video signal and displays digital video
data on TFT LCD display screen. This product is a plug-in
for the Texas Instruments’ C6000 Starter Kit. Since the
VM3224K2 complies to TI DSK standard daughter-card
interface, the product is also compatible with TI Starter Kit,
so with TMS3206713 kit. The VM3224 is embedded over to
see the results of processing done in TMS6713 hardware.

The daughter card is also compatible with Image
processing algorithms, as we are able to display input and
output enhanced images. It is only used to display input and
output images. Rest of the processing is done in TMS6713.

REFERENCES

Fig. 4 Board diagram of VM3224K2 LCD Display

The TFT LCD panel uses an RGB565 pixel
expression that is 320x240 in size. The LCD panel must
provide pixel data periodically according to the pixel array
pattern. Hence, the video module contains memory that can
store 320x240 pixel data. The module also contains an LCD
controller that conveys memory data to the LCD panel in
synchronization with the horizontal and vertical sync
signals. The LCD controller generates signals to drive the
LCD, and the 18-bit address generator generates pixel data
addresses directed to the LCD. Note that the 512 KB DRAM
is divided into two pages consisting of 256 KB each. One
page is used as ongoing picture display buffer while the
other is being read by DSP. These two pages of display
memory are automatically toggled whenever the high
address register is accessed. Thus, the DSP stores image data
in the RGB565 format, in order to display it on the TFT
LCD. So, output obtained in the project is RGB which is
first converted into RGB565 format which is a mandatory
for this daughter kit in order to display the output image in
the respective kit.

Fig. 5 Structure of the TFT LCD Display

IV. EXPERIMENT AND RESULT
The following section shows the output obtained

after successful execution in CCStudio v3.1 and
implementation in TMS6416DSK kit. The figures represent
the output obtained.

Fig. 6 Input Video Frame

Fig. 7 Cartoonized Video Frame

V. CONCLUSION

In this paper, we have presented a simple method
for converting an input live video feed into an output video
having cartoon like appearance by thresholding the
intensity component using less computational overhead.
We have also shown a great implementation of our
objective in DSP hardware using C-programming language.

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 1, Issue 1, September 2014

 All Rights Reserved © 2014 IJARTET 20

REFERENCE

[1]. Gonzalez, Rafael C. and Woods, Richard E. Digital Image Processing,

Pearson, Prentice Hall, Third edition, 2008.

[2]. Texas Instruments, TMS320C6000, Peripherals, Reference Guide,
Dallas, TX, March 2000.

[3]. TMS 320C6416T DSK Technical Reference, DSP Development
Systems, March 2004.

[4]. TMS 320C6000 EMIF-to-External SDRAM interface, September
2007.

[5]. Song-Hai Zhang, Tao Chen, Yi-Fei Zhang, Shi-Min Hu, Ralph
Martin, Vectorizing Cartoon Animations, IEEE Transaction on
Visualization and Graphics, 15: 518-629, 2009.

[6]. J.F.Aujol and G.Gilboa and T.Chan and S.Osher, Structure-texture
image decomposition modeling, algorithms and parameter selection,
International Journal of Computer Vision, Vol 67, No 1, 111-136,
2006.

[7]. A.Chambolle, An algorithm for total variation minimization and
applications, Journal of Mathematical Imaging and Vision, Vol 20, No
1-2, 89-97, 2004.

[8]. J.Gilles, Noisy image decomposition: a new structure, texture and
noise model based on local adaptivity, Journal of Mathematical
Imaging and Vision, Vol 28, No 3,285-295, 2007.

[9]. T.Goldstein and S.Osher, The Split Bregman Method for L1
Regularized Problems, SIAM Journal on Imaging Sciences, Vol 2, No
2, 323-343, 2009.

[10]. U. Clarenz, M. Rumpf, and A. Telea. Robust feature detection and
local classification for surfaces based on moment analysis. IEEE
Transactions on Visualization and Computer Graphics, 10(5):516–
524, 2004.

[11]. Selim Esedo¯glu and Stanley J. Osher. Decomposition of images by
the anisotropic Rudin Osher-Fatemi model. Comm. Pure Appl.Math.,
57(12):1609–1626, 2004.

[12]. J. B. Garnett, T. M. Le, and L. A. Vese. Image decompositions using
bounded variation and homogeneous besov spaces. Technical Report
05-57, UCLA CAM Reports, 2005.

[13]. A. Haddad and Y. Meyer. Variational methods in image processing.
Technical Report 04-52, UCLA CAM Reports, 2004.

[14]. A. Haddad and S. Osher. Texture separation BV − G and BV − L1.
Technical Report 06-26, UCLA CAM reports, 2006.

[15]. S. J. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative
regularization method for total variation-based image restoration.
SIAM Multiscale, Modeling and Simulation, 4(2):460–489, 2005.

[16]. S. J. Osher, A. Sole, and L. A. Vese. Image decomposition and
restoration using total variation minimization and the H−1 norm.
Technical Report 02-57, UCLA CAM Reports, 2002.

[17]. L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise-removal. Physica D, 60:259–268, 1992.

[18]. R. Schaback and H. Werner. Numerische Mathematik. Springer-
Verlag, Berlin, 4te Aufl. edition, 1992.

[19]. O. Scherzer and C.W. Groetsch. Inverse scale space theory for inverse
problems. Lecture Notes in Computer Science, Springer, 2106:317–
325, 2001.

[20]. J. Shen. Piecewise H−1 + H0 + H1 images and the Mumford-Shah-
Sobolev model for segmented image decomposition. Applied Math.
Research Exp., 4:143–167, 2005.

[21]. J. E. Taylor, J. W. Cahn, and W. C. Carter. Variational methods for
microstructural evolution. JOM, 49(12):30–36, 1998.

[22]. J. Weickert. Anisotropic diffusion in image processing. Teubner,
1998.

[23]. G. Wulff. Zur Frage der Geschwindigkeit des Wachstums und der
Aufl¨osung der Kristallfl¨achen. Zeitschrift der Kristallographie,
34:449–530, 1901.

